
Programmable Shading for High Performance Computing

Mark A. Bolstad
Raytheon / Army Research Lab MSRC

Abstract

Programmable shading is a technique that allows for flexibility
in specifying the appearance of an object independent from its
underlying geometry. Widely used in feature films and by the
entertainment industry for more than a decade, programmable
shading has not been adopted by the scientific visualization
community due to its lack of interactivity. With the advent of
graphics hardware that supports programmable shading, and the
two major graphics APIs (OpenGL and DirectX) moving to
where programmable shading will be the standard method of
defining appearances, these technologies will allow scientific
visualization to embrace these technologies by enabling real
time interaction.

Programmable shading can facilitate the exploration of data by
allowing the end user to develop new methods for mapping the
data, independent of the software used to create the geometry.
This paper provides an overview of rendering in general,
examples of programmable shading from entertainment, ARL
MSRC, and other HPC sites, and shows how the recent advances
in graphics hardware and associated Application Programming
Interfaces (API) will enable the DoD user community to apply
these technologies to visualization.

1 Introduction

Rendering is the process of converting a description of a three-
dimensional scene consisting of geometry, appearance and
lighting, into a two-dimensional image. Rendering consists of
several steps: hidden-surface removal, illumination, and
shading.

Hidden-surface removal (or visible-surface determination) is the
process of determining what is currently visible from a
viewpoint. Hidden-surface algorithms in use today are variants
of point-sampling algorithms, where visibility is determined by
taking sample points at a finite number of points, and then trying
to infer the visibility of an entire surface from these limited
points. Sutherland, et al. [Sutherland 1974], identified sorting
order as the major distinction between different types of point-
sampling algorithms. Three of the ten algorithms that Sutherland
identified are the most commonly used today: Z-Buffer [Catmull
1974], Ray-Tracing [Appel 1968] [Kay1979] [Whitted 1980],
and Scan-Line [Wylie 1967] [Watkins 1970] [Bouknight 1970a]
[Bouknight 1970b]. The Z-Buffer algorithm forms the core of
most hardware-accelerated graphics processors.

Illumination is the process of determining the components of the
scene that are dependent on the propagation of light through that
scene. Illumination is divided into two major components, direct
illumination, determining the contribution of light directly
deposited on the surface of an object from a light source, and
indirect illumination, where the light impinging on an object has
arrived at the surface through one or more bounces from other
surfaces. The process of calculating the contribution from a

direct illumination source is a variant of the hidden-surface
process described above.

Shading is the process of determining the distribution of light
leaving a surface given the incident light and the optical
properties of that surface. Using the bi-directional reflectance
distribution function (BRDF), shading computes the final color
of the surface in the image. The BRDF or shading models
implemented in hardware today are Gouraud [Gouraud 1971],
Phong [Bui-Tuong 1975], and Blinn [Blinn 1977],

These shading models limit the appearance of objects to at most
a handful of appearance types, and do not begin to describe the
wide variety of materials seen in the physical world. To
overcome these limitations, various other techniques were
developed including texture mapping [Catmull 1974], Bump
Mapping [Blinn 1978], and Reflection Mapping [Blinn 1976].
The problem with these shading models and their extensions is
that the appearance is directly tied to the underlying geometry.
In order to change the appearance of the surface, it is required to
change the description of the appearance at the definition of the
geometry.

In 1987, Cook et al. [Cook 1987] described a new rendering
architecture called REYES. Developed at Lucasfilm, Ltd., and
refined at Pixar, REYES was designed to handle large scene
complexity (efficiently render scenes with more than 80 million
polygons), scene diversity (many different types of primitives
including polygons, Non-Uniform Rational B-Splines, and
fractals), and shading complexity that could mimic materials
seen in the physical world. Based on these requirements, the
authors decided that a programmable shading model was the
only technique that would suffice. The shading model for
REYES was based on Shade Trees [Cook 1984] and described
in detail by Hanrahan and Lawson [Hanrahan 1990].

Description
Programmable shading is a technique that allows for flexibility
in specifying the appearance of an object independent from its
underlying geometry. By separating shape from shading,
programmable shading alleviates the problem of adding
complexity to geometry in order to describe a shading problem.
For example, whereas cloth can be described as a net of
polygons or a parametric surface for each individual thread,
another approach would be to describe the overall shape of the
fabric geometrically, taking the appearance of the cloth as a
shading problem.

A programmable shader is a piece of code, usually a procedure
that is run whenever the renderer needs the appearance of an
object at a particular sample. Since the shader is called at point
samples, it integrates easily with the three hidden-surface
algorithms described earlier.

Figure 1 shows an example RenderMan shader that implements
a plastic appearance, the associated scene description, and the
resulting image.

surface
plastic (float Ka = 1, Kd = 0.5,
 Ks = 0.5, roughness = 0.1;
 color specularcolor = 1;)
{
 normal Nf = faceforward (normalize(N),I);
 Ci = Cs * (Ka*ambient() + Kd*diffuse(Nf)) +

specularcolor * Ks *
specular(Nf,normalize(I),roughness);

 Oi = Os;
 Ci *= Oi;
}

Display "purple_ball.tif" "file" "rgb"
Format 256 256 1
Projection "perspective" "fov" 30
Translate 0 0 5
WorldBegin
TransformBegin
Translate 0 4 -4
LightSource "pointlight" 1 "intensity" 70
TransformEnd
Color [1 .6 1]
Surface "plastic" "Ks" 1
Sphere 0.5 -0.5 0.5 360
WorldEnd

Figure 1. RenderMan "plastic" shader, a simple scene, and the associated image.

2 Programmable Shading in Entertainment

The entertainment industry has relied heavily on programmable
shading from the initial development of the technique. First
utilized by the feature film industry, programmable shading is
now showing up in consumer games and in gaming consoles
such as the PlayStation2 and the XBox.

The earliest use of programmable shading was in a little known
1984 short, The Adventures of Andre and Wally B., an animation
created to test the capabilities of the REYES architecture. But
the success of the 1986 Academy Award nominated short, Luxo,
Jr., and the 1989 feature file, The Abyss, showed the
entertainment industry what programmable shading could
achieve, and led the revolution of the inclusion of Computer
Generated Imagery (CGI) into nearly every feature film
produced since.

Since HPC is a different industry with different requirements
from the entertainment industry, the question needs to be asked:
Why should HPC care about Hollywood?

The first reason is with the advent of the all computer-generated
movie, the film industry has had to deal with HPC-sized data
management issues. The first Pixar/Disney movie, Toy Story
(1995), required 1 Terabyte of data to describe the entire film,
and 0.5 Terabytes to store the final generated imagery. For the
film, Shrek (2001), the PDI/Dreamworks render farm consisted
of 1482 processors with 6.5 Terabytes of storage. The entire film
required around 200 Terabytes of storage for the description of
the geometry, textures, and shaders used for each frame of the
film.

The second reason is in the visual complexity of the scenes
generated for modern film. Statistics from the movie Shrek
indicate that each frame of the film contains from 200 million to
over 1.2 billion polygons [Flarg 2001]. Additionally, each frame
averages two gigabytes of input to render the image.

Is there any reason why HPC shouldn't adapt to all of the
techniques the entertainment industry uses to make feature
films? The main reason is that the goals of HPC and the
entertainment industry are fundamentally different. For HPC,
the parts of the physical world we are trying to model and
visualize must stay as true to the object or principle that we are
modeling to preserve reality. For the entertainment industry, the
goal is to create a verisimilitude of the object or process that is
to be depicted, using only as much of reality as necessary to

create the effect. For example, in the movie, The Perfect Storm,
Industrial Light and Magic used models of ocean wave
development and the optical properties of water as the principal
components of their wave simulations, but had artists paint
additional foam and spray elements to meet the look requested
by the director. However, these differences are independent of
the choice to use programmable shading, and its flexibility gives
the user control over the depiction of reality.

3 Programmable Shading for High

Performance Computing

Since programmable shading has been shown to handle scenes
of high complexity and large data sets, how can we apply the
techniques developed by the entertainment industry over the last
decade to visualization and to DoD researchers supported by the
HPC program? After understanding the mechanisms of
programmable shading, it is a relatively simple process to add
these features into an already existing visualization pipeline. The
following set of examples will demonstrate the capabilities of
using programmable shading with visualization.

The simplest use of programmable shading is to change the
appearance from the standard Gouraud shading available in
visualization software to a shader that will provide normal
interpolation for curvature information (see Figure 2). By this
simple transformation, DoD researchers have been able to
acquire a better understanding of the shape of the surface,
without obscuring the underlying visualization.

Figure 2. Gouraud (left) vs. Metal (right) shading.

For the Computational Fluid Dynamics simulation of the
transport of species through a city block, a shader was designed
that would create the illusion of volume rendering from a set of
stacked iso-surfaces (Figure 3). For this image, iso-surfaces
were extracted from the time varying, 4.5 million unstructured
cell data as a pre-processing step, a later version of the shader

extracted the iso-surfaces from the data directly, thereby
reducing both the disk and memory requirement of the renderer.

Figure 3. Species transport around a city block. "Gold Foil"

(left) and "Whispy" (right) shaders.

Shown below (Figure 4) is a single frame from a 61,000-frame
hologram of the Brilliant Anti-Armor Technology device.

Figure 4. One frame from a hologram of the Brilliant Anti-

Armor Technology device.

To prevent visual “tearing” of the image (caused when geometry
is partially clipped by the edge of the image), a shader was
created that would fade geometry, in this case, the streamlines
extracted from the CFD simulation that was computed on the
ARL MSRC resources, to transparent across a user-specified
distance. Additionally, a shader that gave strong specular
highlights was used to provide shape information, especially in
the transparent sub-munitions.

3.1 Texture Synthesis

Another use for programmable shading is in synthesizing
textures to convey additional information, such as, the curvature
of a surface or multiple attributes. Figure 5 shows several
examples of how generating textures can provide additional
information on the shape of a transparent surface.

Figure 5. Examples of texture synthesis [Interrante 1997].

3.1.1 Textures for Surface Interpolation

Rheingans [Rheingans 1996] performed a study examining how
using modulated textures instead of transparency helped
computational chemists identify features on the solvent
accessible surface of a molecule. This study showed that the
chemists had better recognition of the surface shape, and a
clearer understanding of the underlying model. While custom
software was developed to create the textures, the technique
could easily be implemented in a programmable shader (see
Figure 6).

Figure 6. Comparison of transparency vs. texturing for surface

curvature.

By encoding the curvature along principal directions as textured
strokes and coloring by the magnitude of the gradient, Interrante
[Interrante 1997] found that more information was conveyed to
a viewer than by plain transparency alone (see Figure 7).

Figure 7. Texture synthesis showing components of principal

directions, colored by the gradient of the curvature
[Interrante 1997].

3.1.2 Textures for Encoding Data

Cabral and Leedom [Cabral 1993] developed a technique using
Line Integral Convolution to create texture maps of two-
dimensional vector fields. The fundamental concept is to render
a scalar pixel value for each vector in a vector field. The pixel
encodes the local vector field by convolving a set of input image
pixels that lie under a local streamline. The resulting image or
texture is similar to the input image, except it is blurred in the
direction of the vector field. If the input image is uncorrelated
white noise, streaks resembling fine hairs lie along streamlines
in the vector field (See Figure 8).

Figure 8. Line Integral Convolution of the surface vector field

on the shuttle.

3.2 Volume Rendering

Unlike the techniques mentioned in previous sections, volume
rendering is not a segmentation technique, i.e., it operates on the
entire volume of data. Programmable shading languages usually
do not have the capabilities or feature sets necessary to do
volume rendering. However, there are two different methods
that one can use to create volume rendered images inside a
renderer supporting programmable shading.

3.2.1 Texture Mapping

The first technique for creating volume rendered images is to
generate a series of tiled, gray-scale, texture maps that represent
the data, and a separate texture map for the color and opacity
transfer functions. Figure 9 shows an example set of input
textures, and the resulting image for a continuous, spherical,
density function. To render this dataset, a scene is created with a
box at the extents of the original data, and a volume texturing
shader is applied to each of the six faces.

Figure 9. Texture Mapping for Volume Rendering. The images
in the upper left are slices through the data set from front to
back. The image in the lower left is the transfer map for color
(top) and opacity (bottom) where black is transparent and white
is fully opaque. The right image is the result.

The advantage of this technique is that you can embed geometry
in the region covered by the volume, for example, the buildings
in Figure 3, and have it rendered correctly. No other volume
rendering technique is capable of mixing geometry types in this
manner. The disadvantage of this technique is that your
rendering is only as good as the number of image slices from the
original data in the texture map.

Dave Bock at NCSA [Bock 1998] used this technique to create
several animations of volumetric data. Figure 10 is one frame
from the computation of the collision of binary neutron stars.

Figure 10. Volume rendering of the collision of binary neutron

stars [Bock 1998].

3.2.2 Ray Casting

The second method is an application of a traditional ray-casting
volume renderer built into a shader. This technique involves the
same scene as in the previous example, but the name of the
dataset is passed to the shader as opposed to an image. The
shader, shown in Figure 11, generates a ray from the eye
through the intersection point on the box. That ray, along with
other information, is passed to an external C routine that
computes the color and opacity along the ray. The shader then
composites that color into the color returned from all other
geometric objects in the scene. The external C routine used for
Figure 11 was implemented in OpenDX, but could have been
implemented in the Visualization Toolkit (VTK) as well.

Figure 11. Direct volume rendering and the associated shader.

This technique cannot be implemented in the programmable
graphics hardware available today. Purcell et al. [Purcell 2002]
have hypothesized that with the expected modifications to
existing hardware, ray casting will become a viable technique
within the next year.

4 Programmable Graphics Hardware

Kurt Akeley [Akeley 2001] created a classification of "GL"-like
machines based on the capabilities of graphics hardware (see
Table 1).

 ERA CAPABILITY EXAMPLE
1 Pre-1987 Wireframe

2 1987-1992 Shaded

3 1992-2000 Texture Mapping

4 2001- Programmability

- Programmable
 Shading

NVIDIA

5 ??? Global Evaluation
- Ray Tracing
- True Shadows
- Global Lighting

Henrik Wann Jensen

Table 1. Generational capabilities of GL-like hardware, after
[Akeley 2001].

Peercy et al. [Peercy 2000] demonstrated that many of the
capabilities of the RenderMan Shading language [Pixar 2000]
(the de facto standard for programmable shading) could be
implemented in 3rd generation hardware that supports multi-
texturing extensions.

True 4th generation hardware is currently available in modern
graphics chips, such as the NVIDIA GeForce4 [NVIDIA 2002]
and the ATI Radeon 8500 [ATI 2001]. These chips replace the
static functions for vertex and texture (fragment) operations with
programmable ones. Since programmable hardware is in its
infancy, there are many limitations, such as:

• Vertex and fragment programs have limited
instructions.

• Programs cannot loop or conditionally branch.
• Each implementation has different instructions,

capabilities, and evaluation sequences.
• Many resource limitations exist:

o Limited number of instructions;
o Limited number of registers;
o Limited inputs and outputs;
o Limited number of textures;
o Limited to 8-bits of fixed-point precision in

fragment operations.

Programmable shading implementations [Stanford 2000] [SGI
2000] for 3rd generation hardware have none of the resource
limitations described above, but suffer from other drawbacks:

• No true displacement of geometry
• Speed

o The Stanford system compiles shaders on
the fly before passing to the hardware.

o Both systems require multiple passes
through the graphics hardware to evaluate
the shader.

In order to provide uniform access to programmable graphics
hardware, several Application Programming Interfaces (APIs)
have been created or proposed. These APIs target capabilities
beyond what is currently available in today’s hardware, but what
will be implemented in future graphics chips.

5 APIs for Programmable Graphics Hardware

There are currently three publicly available APIs that define
interfaces for programmable shading. The first and original
specification is the RenderMan Shading Language. While
somewhat outdated, and missing features available in modern
programming languages (e.g., shaders tend to be monolithic
since shaders may not call other shaders), the RenderMan
Shading Language is still the most complete shading language
currently in use. There are several software implementations of
the RenderMan Standard [DOTC 2001], and there have been at
least two attempts to build hardware implementations of the
RenderMan standard, namely, the Pixar Vision Computer and
the RenderDrive [ART 2002]. There have been reports of
software to translate RenderMan shading language into OpenGL
[Peercy 2000], but the software has not been made publicly
available. All of the images created in Section 3 were made with
a RenderMan-compliant software renderer.

The second API is the DirectX/Direct3D suite from Microsoft
[DirectX 2001]. The DirectX API is capable of a wide range of
programmable effects. Its development emphasis is directed at
the games market, but much of the feature set could be
leveraged for HPC applications. There are several features of the
API that make it unsuitable for HPC type applications:

• Shaders are written in a pseudo-assembly language
with little to no support for a high-level language API.
However, shaders can be accessed from any high-level
language.

• DirectX is a single platform API, limited to the
Windows operating system.

The final API that will be discussed is the OpenGL 2.0 proposal,
currently in development. The first efforts to define OpenGL
began in 1990 and resulted in a specification in 1992. Over the
last decade, the specification has changed very little while there
has been a dramatic change in the capabilities of graphics

hardware. The OpenGL 2.0 proposal was motivated by the fact
that [OpenGL2 2002]:

“… graphics hardware is changing rapidly from the
model of a fixed function state machine (as originally
targeted by OpenGL) to that of a highly flexible and
programmable machine.”

With this motivation in mind, the proposal then defines the
following goals:

• Bring OpenGL to a level that reflects the capabilities
and performance of current and near-future graphics
hardware.

• Provide a vision for the development of future
generations of programmable graphics hardware.

• Reduce the need for existing and future extensions to
OpenGL by replacing complexity with
programmability.

The OpenGL 2.0 specification is currently being developed with
broad support from industry and OEMs. The scheduled first
draft of the specification is scheduled for June 2002, with the
first public review draft at SIGGRAPH 2002 in July. Initial
implementations of OpenGL 2.0 should occur around December
2002, and full implementations by July 2003.

6 Conclusion

It has been shown that programmable shading is a viable
technique for scientific visualization. Programmable shading
will allow for the creation of new techniques for the examination
of data, and provide alternative ways of implementing older
techniques. With the advent of hardware accelerated
programmable shading, and the APIs necessary to support it,
this technique will not only become a standard part of scientific
visualization, but will change how visualization is done.

At the ARL MSRC, we are beginning to apply these techniques
to the data generated by DoD researchers. It is expected that
these techniques and shaders will be provided to the DoD user
community over the next several years.

7 References

Akeley, K., Hanrahan, P. “Real Time Graphics Architectures”,

CS448A - Topics in Computer Graphics, Stanford University,
2001, http://graphics.stanford.edu/courses/cs448a-01-fall/

Appel, A. “Some Techniques for Shading Machine Renderings

of Solids”, In Proceedings of the AFIPS Spring Joint
Computer Conference, AFIPS Press, Vol. 32, 1968, 37-49

ART 2002. Advanced Rendering Technology product web site,

http://www.art-render.com

ATI 2001. ATI Radeon 8500 product web site,

http://www.ati.com/products/pc/radeon8500128/index.html

Blinn, J.F., Newell, M.E. “Texture and Reflection in Computer

Generated Images”, In Communications of the ACM, 19, 10
(Oct. 1976), 542-547

Blinn, J.F. “Models of Light Reflection for Computer
Synthesized Pictures”, In Proceedings of ACM SIGGRAPH
1977, 192-198

Blinn, J.F. “Simulation of Wrinkled Surfaces”, In Proceedings

of ACM SIGGRAPH 1978, 286-292

Bock, D. Visualization Shading Project web site,

http://woodall.ncsa.uiuc.edu/dbock/projects/VisShade/

Bouknight, J.W. “A Procedure for Generation of Three-

Dimensional Half-Toned Computer Graphics Presentations”,
In Communications of the ACM, 13, 9 (Sept. 1970), 527-536

Bouknight, J.W., Kelley, J.C. “An Algorithm for Producing

Half-Toned Computer Graphics Presentation with Shadows
and Movable Light Sources”, In Proceedings of the AFIPS
Spring Joint Computer Conference, AFIPS Press, Vol. 36,
1970, 1-10

Bui-Tuong, P. “Illumination for Computer Generated Pictures”,

In Communications of the ACM, 18, 6 (June 1975), 311-317

Cabral,B., Leedom, L. “Imaging Vector Fields Using Line

Integral Convolution”, In Proc. of ACM SIGGRAPH 1993,
263-272.

Catmull, E.E. “A Subdivision Algorithm for Computer Display

of Curved Surfaces”, Ph. D. Dissertation, University of Utah,
Salt Lake City, Utah, 1974

Cook, R.L. “Shade Trees”, In Proceedings of ACM SIGGRAPH

1984, 223-231

Cook, R.L., Carpenter, L., Catmull, E. “The REYES Image

Rendering Architecture”, In Proceedings of ACM SIGGRAPH
1987, 95-102

DirectX 2001, DirectX Home Page,

http://www.microsoft.com/windows/directx/default.asp

DOTC 2001. RenderMan-Compliant Renderers: Past, Present,

and Future, http://www.dotcsw.com/links.html

Flarg 2001. "Shrek Rendering Statistics",

http://www.flarg.com/shrek_stats.html

Forssell, L., “Visualizing Flow Over Curvilinear Grid Surfaces

Using Line Integral Convolution”, In Proceedings of IEEE
Visualization ‘94

Gouraud, H. “Computer Display of Curved Surfaces”, In IEEE

Transactions on Computers, C-20, 6, 1971, 623-629

Hanrahan, P., Lawson, J. “A Language for Shading and Lighting

Calculations”, In Proceedings of ACM SIGGRAPH 1990,
289-298

Interrante, V. "Illustrating Surface Shape in Volume Data via

Principal Direction-Driven 3D Line Integral Convolution”, In
Proceedings of ACM SIGGRAPH 1997, 109-116

http://www.art-render.com/
http://woodall.ncsa.uiuc.edu/dbock/projects/VisShade/
http://www.dotcsw.com/links.html
http://www.flarg.com/shrek_stats.html

Kay, D.S., Greenberg, D. “Transparency for Computer
Synthesized Images”, In Proceedings of ACM SIGGRAPH
1979, 158-164

NVIDIA 2002. GeForce4 Ti Product overview,

http://www.nvidia.com/docs/lo/1467/SUPP/PO_GF4Ti_2.05.
02.pdf

OpenGL2 2002. “OpenGL 2.0 Overview”,

http://www.3dlabs.com/support/developer/ogl2/whitepapers/i
ndex.htm

Peercy, M. S., Olano, M., Airey, J., Ungar, P. J., “Interactive

Multi-Pass Programmable Shading”, In Proceedings of ACM
SIGGRAPH 2000, 425-432

Pixar 2000. “The RenderMan Interface Specification”,

http://www.pixar.com/renderman/developers_corner/rispec/in
dex.html

Purcell, T.J., Buck, I., Mark, W.R., Hanrahan, P. “Ray Tracing

on Programmable Graphics Hardware”, to appear in
Proceedings of ACM SIGGRAPH 2002

Rheingans, P. "Opacity-modulating Triangular Textures for

Irregular Surfaces", IEEE Visualization '96, pp. 219-225.

 SGI 2000. OpenGL Shader product web site,

http://www.sgi.com/software/shader

Stanford 2000. “Stanford Real-Time Programmable Shading

Project”, http://graphics.stanford.edu/projects/shading

Sutherland, I.E., R. F. Sproull, and R. A. Schumacker, "A

Characterization of Ten Hidden-Surface Algorithms",
Computing Surveys, 6, 1, 1974, 1-55

Watkins, G. “A Real Time Hidden Surface Algorithm”, Ph. D.

Dissertation, University of Utah, Salt Lake City, Utah, 1970

Whitted, T. “An Improved Illumination Model for Shaded

Display”, In Communications of the ACM, 23, 6 (June 1980),
343-349

Wylie, C., Romney, G.W., Evans, D.C., Erdahl, A.C. “Halftone

Perspective Drawings by Computer”, In Proceedings of the
Fall Joint Computer Conference, 1967, Thomson Books, 49-
58

http://www.3dlabs.com/support/developer/ogl2/whitepapers/index.htm
http://www.3dlabs.com/support/developer/ogl2/whitepapers/index.htm

	Abstract
	1 Introduction
	Description

	2 Programmable Shading in Entertainment
	3 Programmable Shading for High Performance Computing
	3.1 Texture Synthesis
	3.1.1 Textures for Surface Interpolation
	3.1.2 Textures for Encoding Data
	3.2 Volume Rendering
	3.2.1 Texture Mapping
	3.2.2 Ray Casting
	4 Programmable Graphics Hardware
	5 APIs for Programmable Graphics Hardware
	6 Conclusion
	7 References

